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Braiding of two spiraling laser beams due to plasma wave wakes
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~Received 26 April 2001; published 13 November 2001!

We study how two Gaussian laser beams interact through plasma wave wakes produced when they co-
propagate in a plasma. Using a variational principle, we derive equations of motion for the centroid of each
beam, and find braided centroid solutions. These results can be generalized to other nonlinear optical media
with noninstantaneous nonlinearity.
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The mutual interaction between distinct laser beams
nonlinear optical media, including between solitons, has
ceived much recent attention@1–4#. The nonlinearities con-
sidered in these studies are all instantaneous, namely dep
ing only on the local field intensity. Recently, it was show
that when two partially overlapping laser beams propagat
a plasma, there is an effective attractive force between
two beams due to the relativistic electron mass nonlinea
@5#. The attractive force can cause the two beam centroid
spiral around each other. However, in a plasma, the pond
motive force of each laser can excite plasma wave wa
The electron density modulation of the wakes provides
other nonlinearity to the plasma’s index of refraction. Mo
importantly, the presence of the wake breaks the translati
symmetry along the propagation direction and is an exam
of a noninstantaneous nonlinearity. Therefore, instead of
having as a rigid rod described by a (211)-dimensional~D!
system@2–4#, a single laser’s centroid can go unstable
transverse or so-called hosing oscillations and must be
scribed by a (311)D system@6,7#. The interaction of mul-
tiple lasers can be even more interesting. In Ref.@5#, fully
nonlinear three-dimensional particle-in-cell simulatio
showed that two lasers propagating in plasmas can actu
intertwine and form braided patterns. To the best of o
knowledge, such behavior has never been discussed for o
nonlinear optical media.

The purpose of this paper is to show that when the m
dium has a noninstantaneous nonlinearity, i.e., the media
memory, the solutions to the nonlinear wave equations
more rich in behavior. Motivated by the observations of o
simulations@5# we concentrate on plasmas, but we belie
our results should apply equally well to other media. W
adopt the variational method to obtain approximate behav
and derive equations of motion for the centroids of two
sers interacting through a noninstantaneous nonlinearity.

We begin with the weakly nonlinear coupled equations
the evolution of the lasers and plasma wave wakes@8#,
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where aW is the envelope of a vector potentialAW with fre-

quencyv0 , eAW /mc25aW exp@2ik0c(t2z/c)#/21c.c andf is
the normalized electrostatic potential. The speed of li
frame variables (t[z,c[ct2z) is used. We definekp

2

[4pne2/mc2 with n the plasma density ande, m, c, and
k0 are the electron charge, electron mass, speed of light,
vacuum laser wave number, respectively. In the weakly n
linear limit used here,f includes both the electron densit
modulation and the relativistic mass effect,f52dn/n
1a2/4. If the assumption of translational symmetry inc
direction were taken forf, i.e., ]f/]c[0, thenf5a2/4
from Eq. ~2! and only the relativistic mass effect would b
present. Viewed in another way, the solution of Eq.~2! can
be formally written asf5(kp

2/4)*dc8ua(c8)u2G(c2c8)
where the Green’s functionG for Eq. ~2! is G5H(c
2c8)sin@kp(c2c8)# (H is the Heaviside step function!.
Equations~1! and ~2! would then reduce to the nonlinea
Schrödinger equation for a cubic nonlinearity if ad function
was used for the Green’s function,G5d(c2c8). When the
Green’s function is not ad function, the nonlinearity be-
comes noninstantaneous, which is the topic of this pape

We next assume that there are two distinct laser be
that are orthogonally polarized,aW 5 x̂1a11 x̂2a2 where
( x̂1 ,x̂2)5( x̂,ŷ). Substituting the expression foraW into Eqs.
~1! and ~2! gives

S 2ik0

]

]t
1¹'

2 2kp
2Da152kp

2fa1 , ~3!

S 2ik0

]

]t
1¹'

2 2kp
2Da252kp

2fa2 , ~4!

S ]2

]c2
1kp

2D f5
kp

2

4
~ ua1u21ua2u2!. ~5!

We use variational principle methods to obtain appro
mate yet illustrative solutions to the above equatio
@2–5,7,9#. Extending the single laser case@7#, the Lagrangian
density for these equations is
©2001 The American Physical Society01-1
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For the trial functions for eacha andf, we use Gaussian
functions, which characterize a field quantity by its amp
tude, spot size, and centroid. Generally, the spot size ev
tion is only weakly coupled to the centroid evolution.~In fact
for linear perturbations they are completely decoupled@7#.!
To isolate the centroid movement and simplify the calcu
tion, we will use one fixed spot size in all our trial function
~We implicitly assume that a fixed spot size can be achie
through self-focusing@10# by choosing a proper laser power!
The laser amplitudes will also be kept constant becaus
power conservation@5,7#. To simplify things further, we will
assume that the two laser beams are initially identical~same
amplitude and same spot size!.

Since each laser can generate its own wake, we will w
the trial function forf as a sum of two Gaussian function
each with its own amplitude and centroid. In principle, t
centroids of the lasers can be different from that off. How-
ever, Duda and Mori showed for the single laser case@7#
there exists a mode wheref virtually follows the laser so the
th
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two centroids are essentially the same. This happens in
so-called long wavelength regime when the deviation of
centroid from a straight line has a much longer wavelen
than the plasma wavelength. Here, we will concentrate o
mode where each laser has the same centroid as that o
corresponding wake it generates since the calculation
much simpler and this still admits braided solutions. The
fore, the trial functions are

aj5AP

W
exp@2 ikW j•~xW2XW j !#exp@2~xW2XW j !

2/W2#,

j 51,2, ~7!

f5 (
j 51,2

f j exp@22~xW2XW j !
2/W2#. ~8!

Here, the perpendicular momentum fora, kW j[(kx j ,ky j), the
centroidsXW j[(Xj ,Yj ), and wake amplitudesf j are all real
functions of (t,c). The spot size off is chosen asW/A2 so
that f5(ua1u21ua2u2)/4 in the limit that]/]c[0.

Substituting these trial functions into Eq.~6! and integrat-
ing the Lagrangian density over thexy plane, we obtain a
reduced Lagrangian density
L[
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`
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Here a jk and a are the normalized distances between

lasers and the wakes,a jk[(XW j2XW k)
2/W2 and between the

wakes,a[(XW 12XW 2)2/W2, respectively. The partial deriva
tives ]/]t and ]/]c are represented by the dot and t

prime, respectively. The variableskW j can be eliminated@7# by

using their Euler-Lagrange equationsk0XẆ j1kW j50, leaving

only six variables,XW j andf j , j 51,2.
The six resulting Euler-Lagrange equations from the

duced Lagrangian Eq.~9! are highly nonlinear and are diffi
cult to solve in general. In the rest of this paper, we, the
fore, concentrate on those solutions that have the follow
symmetry property:
e

-

-
g

XW 152XW 2[XW /2, ~10!

f15f2[f. ~11!

These assumptions are justified by the apparent symmet
Eq. ~9! between the subscripts 1 and 2 and by the existe
of spiraling solutions with the similar symmetry in the in
stantaneous nonlinearity case@5#. The equations forXW andf
can be obtained by substituting Eqs.~10! and ~11! into the
six Euler-Lagrange equations from the reduced Lagrang
Eq. ~9!. Then, only three out of those six equations are fou
to be independent. Alternatively, the same three equat
can be derived by first substituting the symmetry conditio
1-2
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Eqs.~10! and ~11! into Eq. ~9! and then deriving the Euler
Lagrange equations forXW ,f from the new simplified La-
grangian density. Here, we use the second method.

After the substitution of the symmetry conditions Eq
~10! and~11!, the reduced Lagrangian density further simp
fies to

Lsym5
2P

W2
2

P

4
k0

2XẆ 21
f2

2 F2~e2a11!kp
2W21~e2a21!

3~XW 8!22
2

W2
e2a~XW •XW 8!2G2~e2a11!f82W2

12e2aff8XW •XW 82
kp

2P

2
~e2a11!f, ~12!

where nowa5(XW )2/W2. The Euler-Lagrange equations fo
XW ,f are

eak0
2PW4XẄ 24f2~XW •XW 8!2XW 14W2f~XW •XW 8!~fXW 812f8XW !

12W4~211ea!f~fXW 912f8XW 8!14W2f2~XW •XW 9!XW

12W2f2~XW 8!2XW 12fXW ~22kp
2W4f1kp

2W2P

22W4f9!50, ~13!

~ea11!S 2W2f912kp
2W2f2

kp
2P

2 D 1~12ea!~XW 8!2f

1
2

W2
~XW •XW 8!2f24~XW •XW 8!f822@~XW 8!21XW •XW 9#f

50. ~14!

These equations can be simplified further if we seek o
those solutions for which the distance between the two la
centroids is constant, i.e.,a[const. This meansXW •XW 8[0
and XW •XW 952(XW 8)2. Under these conditions, Eqs.~13! and
~14! become

eak0
2PW4XẄ 12W4~211ea!f~fXW 912f8XW 8!

22W2f2~XW 8!2XW 12fXW ~22kp
2W4f1kp

2W2P

22W4f9!50, ~15!

~ea11!S 2W2f912kp
2W2f2

kp
2P

2 D 1~12ea!~XW 8!2f50.

~16!

The projection of Eq.~15! in theXW 8 direction yields an even
simpler relation
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We look for uniformly braiding solutions of the form

XW 5AaW@ x̂ cos~vt1kc!1 ŷ sin~vt1kc!#, ~18!

where the speed of light frame frequencyv and wave num-
ber k are all constant. Note that ask→0, the lasers spira
around each other as rigid rods with a rotation frequencyv.
These solutions exist for an instantaneous nonlinearity.
new types of braiding solutions arise whenk is not zero. For

such a solution,XẄ •XW 850 andd/dc(XW 8)250. Therefore, for
a uniformly braided laser,f is a constant since Eq.~17!
implies thatf850. Under these conditions,f can be solved
for from Eq. ~16!,

f5
P

4W2 F12
a

2
tanhS a

2 D S k

kp
D 2G21

. ~19!

This solution reduces to the instantaneous nonlinearity re
f5P/4W2 when k→0. As the braiding wavelength get
shorter,k increases andf gets bigger. At some value o
k, f exceeds unity and our weakly nonlinear soluti
breaks down. Roughly speaking, there is a critical wa
number k5kp /A(a/2)sinh(a/2). Note thatk needs to be
less thankp in order for our assumption that the centroids f
the laser and wake be equal to remain valid.

Finally, upon substituting Eqs.~18! and ~19! into Eqs.
~15!, we obtain the dispersion relation

v25V0
2 12k̃2f 1~a!

@12k̃2f 2~a!#2
, ~20!

where V0[kpAPe2a/(2k0W2) is the rotation frequency
when there is no braiding,k̃[k/kp is the normalized wave
number, andf 1 and f 2 are two functions ofa: f 15(e2a

2112aea)/@2(ea11)# and f 25(a/2)tanh(a/2). This dis-
persion relation relatesv, the rotation frequency of the
beams int, with k̃, the braiding wavelength inc.

The braiding discussed here is a 3D phenomenon and
only be described by a (311)D system with a noninstanta
neous nonlinearity. While the uniformly braiding solution
Eq. ~18! is not a soliton in a strict sense because we h
used an approximate variational approach, it does hav
constant interlaser distance and a constant wake. It will b
interest to try to find true soliton solution in media with th
noninstantaneous nonlinearity. Furthermore, we have c
centrated on the so-called long wavelength limit whe
1-3
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]2f/]c2!kp
2f in Eq. ~2!. It will, therefore, be of interest to

study the limit where the plasma wave is nearly resona
driven. We close by noting that the parameters required
look for braided lasers in plasmas are not severe. For
ample, the simulation results of Ref.@5# were for a 1 mm
laser with power of a couple of terawatt in a plasma den
of 1.131019 cm23.
s.
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