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Braiding of two spiraling laser beams due to plasma wave wakes
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We study how two Gaussian laser beams interact through plasma wave wakes produced when they co-
propagate in a plasma. Using a variational principle, we derive equations of motion for the centroid of each
beam, and find braided centroid solutions. These results can be generalized to other nonlinear optical media
with noninstantaneous nonlinearity.
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The mutual interaction between distinct laser beams iﬂNhereé is the enve|ope of a vector potentia_] with fre-

nonlinear optical media, including between solitons, has re- r > . .
. L SR = - - +c.
ceived much recent attentigd—4]. The nonlinearities con- quencywo, eAmc’=aexd —iky(t-2Zc)j2+c.c andg is

sidered in these studies are all instantaneous, namely depet e normalized electrostatic potential. The speed of light

- . — — _ . . 2
ing only on the local field intensity. Recently, it was shownr}rame variables {=z,y=ct—2) is used. We definek,

that when two partially overlapping laser beams propagate i 4mne?/mc® with n the plasma density anel m, c, and
a plasma, there is an effective attractive force between thKo are the electron charge, electron mass, speed of light, and
two beams due to the relativistic electron mass nonlinearityacuum laser wave number, respectively. In the weakly non-
[5]. The attractive force can cause the two beam centroids thnear limit used hereg includes both the electron density
spiral around each other. However, in a plasma, the ponderdnodulation and the relativistic mass effeah=—on/n
motive force of each laser can excite plasma wave wakesta’/4. If the assumption of translational symmetry gn
The electron density modulation of the wakes provides andirection were taken fok, i.e., d¢/dy=0, then ¢p=a’/4
other nonlinearity to the plasma’s index of refraction. Morefrom Eg. (2) and only the relativistic mass effect would be
importantly, the presence of the wake breaks the translationgresent. Viewed in another way, the solution of E2). can
symmetry along the propagation direction and is an examplée formally written as¢= (k3/4)fdy’[a(y')[2G(y—y')
of a noninstantaneous nonlinearity. Therefore, instead of bewhere the Green's functiorG for Eq. (2) is G=H(y
having as a rigid rod described by a+{2)-dimensionalD) —¢")sinky(y—y')] (H is the Heaviside step functipn
system[2—4], a single laser’s centroid can go unstable toEquations(1) and (2) would then reduce to the nonlinear
transverse or so-called hosing oscillations and must be deéchralinger equation for a cubic nonlinearity if@&function
scribed by a (3-1)D system[6,7]. The interaction of mul- was used for the Green’s functioB,= (¥ — ¢'). When the
tiple lasers can be even more interesting. In RBf, fully = Green’s function is not & function, the nonlinearity be-
nonlinear three-dimensional particle-in-cell simulationscomes noninstantaneous, which is the topic of this paper.
showed that two lasers propagating in plasmas can actually We next assume that there are two distinct laser beams
intertwine and form br_aided patterns. To t.he best of oukthat are orthogonally polarizeda=x;a;+X,a, where
knov_vledge, sych beha_lwor has never been discussed for oth&liiz):(;('};). Substituting the expression far into Egs.
nonlinear optical media. (1) and (2) gives
The purpose of this paper is to show that when the me-
dium has a noninstantaneous nonlinearity, i.e., the media has
memory, the solutions to the nonlinear wave equations are

more rich in behavior. Motivated by the observations of our (2ik0i+ Vf—kg a;= —k§¢al, 3
simulations[5] we concentrate on plasmas, but we believe ar
our results should apply equally well to other media. We
adopt the variational method to obtain approximate behavior,
and derive equations of motion for the centroids of two la- L9 s, 5
sers interacting through a noninstantaneous nonlinearity. 2'k05+ Vi—kp|a=—kypay, 4
We begin with the weakly nonlinear coupled equations for
the evolution of the lasers and plasma wave wdkés
2 k2
P ((9—(//2+k’2))¢=zp(|a1|2+|a2|2). )
(2ik0a—7+ VZ-Kki|a=—k2¢a, (1)
We use variational principle methods to obtain approxi-
5 K2 mate yet illustrative solutions to the above equations
(_ + k2> b=-> |al?, ) [2-5,7,9. Extending the single laser cas@, the Lagrangian
P P 4 density for these equations is
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two centroids are essentially the same. This happens in the
aj— -~ aj i vV.a-vioa+ kgajaj* so-called long wavelength regime when the deviation of the
centroid from a straight line has a much longer wavelength
a2 than the plasma wavelength. Here, we will concentrate on a
X(1- ¢)} —2((9—) +2k,2)¢2. (6) mode where each laser has the same centroid as that of the
¥ corresponding wake it generates since the calculation is
For the trial functions for each and ¢, we use Gaussian much simpler and this still admits braided solutions. There-

functions, which characterize a field quantity by its ampli-foré: the trial functions are

tude, spot size, and centroid. Generally, the spot size evolu- 5

tion is only weakly coupled to the centroid evolutidn fact _ \ﬁ i (e_%. (o \21\N2

for linear perturbations they are completely decouglgl) 3 Wexp[ Tk Ox= X)) Jexil = (x= X)W,

To isolate the centroid movement and simplify the calcula-

tion, we will use one fixed spot size in all our trial functions. j=1,2, (7)

(We implicitly assume that a fixed spot size can be achieved

through self-focusin@10] by choosing a proper laser power. .

The laser amplitudes will also be kept constant because of b= 2, ¢yexd —2(x—X))WA]. (8)

power conservatiofb,7]. To simplify things further, we will =12

assume that the two laser beams are initially identisaime . .

amplitude and same spot sjize Here, the Perpendlcular momentum &ar k;j=(k; k), the
Since each laser can generate its own wake, we will writ€entroidsX;=(X;,Y;), and wake amplitudeg; are all real

the trial function for¢ as a sum of two Gaussian functions, functions of (r, ). The spot size of is chosen a¥V/+/2 so

each with its own amplitude and centroid. In principle, thethat ¢=(|a;|?+ |a,|?)/4 in the limit thatd/9y=0.

centroids of the lasers can be different from thatpofHow- Substituting these trial functions into E@) and integrat-

ever, Duda and Mori showed for the single laser cg8e ing the Lagrangian density over they plane, we obtain a

there exists a mode whegevirtually follows the laser so the reduced Lagrangian density

*
( Ja’ a;

[y
=; 7ooxfocy

=> P

j=1,2

k§j+k§j
2

_ : 1 e itgy+e %i2g 2 v, Lo
Ko(Ky; X+ Ky ;) + +§k§( - > 2) +.22[—[¢j2(sz+Yj2)+§¢j2W2

—+
W2 j=1,

12222—111/14 IAVAARY VA 2 AVAARY Y4 2
+5kpdW RV 50162 W 1o X X[ W= 2(Xy = Xp) T+ Y1 Yo [ W= 2(Y1 = Y2) 7]

—2(X1= XD (Y1=Y2) (X1 Y5+ XY D} 1 ps WAL X (Xo—Xq) + Y1(Y2— Y1) ]+ b1 p,W?

’ ’ 1 2
XXX =X2) +Y5(Y1=Y2) = Eka4¢1¢z : 9
|
Here aj and « are the no[mali}ed distances between the 212_225)2/2’ (10)
lasers and the wakesy,=(X;—X,)%W? and between the
wakes, o= (X;— X,)2/W?, respectively. The partial deriva- 1= o= o. (12)

tives d/dr and d/dyr are represented by the dot and the
; ; ARl . These assumptions are justified by the apparent symmetry in
rime, respectively. The variabl&s can be eliminate@7] b ) X
P ) -p Y §_ L 67]. Y Eqg. (9) between the subscripts 1 and 2 and by the existence
using their Euler-Lagrange equatiokgX;+k;=0, leaving  of spiraling solutions with the similar symmetry in the in-
only six variablesX; and ¢;, j=1,2. . stantaneous nonlinearity ca&d. The equations foX and ¢
The six resqltmg EuIer-Lagrange equations from th.e_fevc:an be obtained by substituting Eq440) and (11) into the
duced Lagrangian Ed9) are highly nonlinear and are diffi- six Euler-Lagrange equations from the reduced Lagrangian
cult to solve in general. In the rest of this paper, we, there£q. (9). Then, only three out of those six equations are found
fore, concentrate on those solutions that have the followingo be independent. Alternatively, the same three equations

symmetry property: can be derived by first substituting the symmetry conditions
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Egs.(10) and (1)) into Eq.(9) and then deriving the Euler-

Lagrange equations fo)?,d) from the new simplified La-
grangian density. Here, we use the second method.

After the substitution of the symmetry conditions Egs.
(10) and(11), the reduced Lagrangian density further simpli-

fies to
2P P 292 ? —a 2\A/2 -
Symzﬁ—zkox +7 2(e +l)ka +(e —1)
x(i')Z—ie*“(X-X')z —(e7%+ 1) W2
W2

2

., KiP
+2e “pp'X-X'— (e "+ 1)4, (12

where nOWaZ()Z)Z/WZ. The Euler-Lagrange equations for
X, are

eUKZPWAX — 42X X' 2K+ AWRH(X- X' ) (X +2¢'X)
+2WA(— 14 e%) (X" +2¢' X') + AW H2(X- X")X
+2W22(X")2X+ 2pX(— 2K3W* b+ kSW2P

—2W4¢") =0, (13

2
-

k
(e*+1)| 2W?¢" + 2k3W2 p— 5

+(1—e*)(X")%¢

+V%<>?->?'>2¢—4<>?~>?'>¢'—2[<>?'>2+>?->2"]¢

0.

(14

These equations can be simplified further if we seek only
those solutions for which the distance between the two laser

centroids is constant, i.ea=const. This meanX-X'=0

and X-X"=—(X')2. Under these conditions, Eq&l3) and
(14) become

e kZPWAX + 2WA(— 1+ %) (X" +2¢'X)
2 12/ 1\2v v 2\£ /4 2\p /2
—2W2GA(X )X+ 2K (— 2KAWA -+ KAWZP
—2WA¢") =0, (15)

k2P
@ 2 4n 2\pf2 p
(74 1) 2W2¢" + 2k2W2p— 2

5|+ (1-eM)(X)?p=0.

(16)

The projection of Eq(15) in the X’ direction yields an even
simpler relation
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eUkZPWAX - X+ 2WA(— 1+e%) (X")2

1 d
2%ay

+2¢'(>Z')2}=o. (17

We look for uniformly braiding solutions of the form

X=JaW[X cof w7+ kh) + Y sin w7+ k)], (18

where the speed of light frame frequeneyand wave num-
ber « are all constant. Note that as—0, the lasers spiral
around each other as rigid rods with a rotation frequeacy
These solutions exist for an instantaneous nonlinearity. The
new types of braiding solutions arise wherns not zero. For

such a solutionX- X’ =0 andd/dy(X')2=0. Therefore, for
a uniformly braided laserg is a constant since Eq17)
implies that¢’ =0. Under these conditiong; can be solved
for from Eq. (16),

(19

This solution reduces to the instantaneous nonlinearity result
¢=PI4W? when k—0. As the braiding wavelength gets
shorter, k increases andb gets bigger. At some value of
Kk, ¢ exceeds unity and our weakly nonlinear solution
breaks down. Roughly speaking, there is a critical wave
number k=K, /\(a/2)sinh@/2). Note thatx needs to be
less thark,, in order for our assumption that the centroids for
the laser and wake be equal to remain valid.

Finally, upon substituting Eq918) and (19) into Egs.
(15), we obtain the dispersion relation

, o 1-Kfi(a)

Y R

(20

where Qozkp\/Pe‘“/(Zkowz) is the rotation frequency
when there is no braiding}%zfdkp is the normalized wave
number, andf, andf, are two functions ofa: f;=(e?®
—1+2ae%)/[2(e*“+1)] and f,=(a/2)tanh@/2). This dis-
persion relation relates, the rotation frequency of the
beams inr, with «, the braiding wavelength ir.

The braiding discussed here is a 3D phenomenon and can
only be described by a (81)D system with a noninstanta-
neous nonlinearity. While the uniformly braiding solution of
Eqg. (18) is not a soliton in a strict sense because we have
used an approximate variational approach, it does have a
constant interlaser distance and a constant wake. It will be of
interest to try to find true soliton solution in media with the
noninstantaneous nonlinearity. Furthermore, we have con-
centrated on the so-called long wavelength limit where
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(92¢/o71/;2<k,2)¢ in Eq. (2). It will, therefore, be of interest to We acknowledge useful conversations with Dr. J. M.
study the limit where the plasma wave is nearly resonantiypawson, Dr. L. O. Silva, Dr. C. Joshi, Dr. T. Katsouleas, and
driven. We close by noting that the parameters required t®r. T. W. Johnston. This work is supported by DOE under
look for braided lasers in plasmas are not severe. For excontract Nos. DE-FG03-98DP00211 and DE-FGO03-
ample, the simulation results of R¢b] were for a 1 um  92ER40727, by NSF under Grants Nos. DMS 9722121 and
laser with power of a couple of terawatt in a plasma densityPHY-0078508, and by the ILSA at LLNL under Contract No.

of 1.1x 10" cm™3. W-7405-ENG-48.
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